Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
GCD(s(x), y, s(z)) → MIN(x, z)
GCD(x, s(y), s(z)) → -1(max(y, z), min(y, z))
GCD(s(x), y, s(z)) → MAX(x, z)
MIN(s(x), s(y)) → MIN(x, y)
GCD(s(x), y, s(z)) → -1(max(x, z), min(x, z))
GCD(s(x), s(y), z) → MAX(x, y)
GCD(s(x), s(y), z) → MIN(x, y)
GCD(s(x), s(y), z) → GCD(-(max(x, y), min(x, y)), s(min(x, y)), z)
GCD(s(x), s(y), z) → -1(max(x, y), min(x, y))
GCD(s(x), y, s(z)) → GCD(-(max(x, z), min(x, z)), y, s(min(x, z)))
MAX(s(x), s(y)) → MAX(x, y)
GCD(x, s(y), s(z)) → GCD(x, -(max(y, z), min(y, z)), s(min(y, z)))
GCD(x, s(y), s(z)) → MAX(y, z)
GCD(x, s(y), s(z)) → MIN(y, z)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
GCD(s(x), y, s(z)) → MIN(x, z)
GCD(x, s(y), s(z)) → -1(max(y, z), min(y, z))
GCD(s(x), y, s(z)) → MAX(x, z)
MIN(s(x), s(y)) → MIN(x, y)
GCD(s(x), y, s(z)) → -1(max(x, z), min(x, z))
GCD(s(x), s(y), z) → MAX(x, y)
GCD(s(x), s(y), z) → MIN(x, y)
GCD(s(x), s(y), z) → GCD(-(max(x, y), min(x, y)), s(min(x, y)), z)
GCD(s(x), s(y), z) → -1(max(x, y), min(x, y))
GCD(s(x), y, s(z)) → GCD(-(max(x, z), min(x, z)), y, s(min(x, z)))
MAX(s(x), s(y)) → MAX(x, y)
GCD(x, s(y), s(z)) → GCD(x, -(max(y, z), min(y, z)), s(min(y, z)))
GCD(x, s(y), s(z)) → MAX(y, z)
GCD(x, s(y), s(z)) → MIN(y, z)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 9 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- -1(s(x), s(y)) → -1(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MAX(s(x), s(y)) → MAX(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MIN(s(x), s(y)) → MIN(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x), s(y), z) → GCD(-(max(x, y), min(x, y)), s(min(x, y)), z)
GCD(s(x), y, s(z)) → GCD(-(max(x, z), min(x, z)), y, s(min(x, z)))
GCD(x, s(y), s(z)) → GCD(x, -(max(y, z), min(y, z)), s(min(y, z)))
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
GCD(s(x), s(y), z) → GCD(-(max(x, y), min(x, y)), s(min(x, y)), z)
GCD(s(x), y, s(z)) → GCD(-(max(x, z), min(x, z)), y, s(min(x, z)))
GCD(x, s(y), s(z)) → GCD(x, -(max(y, z), min(y, z)), s(min(y, z)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( -(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( max(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( min(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( GCD(x1, ..., x3) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
max(x, 0) → x
max(0, y) → y
-(s(x), s(y)) → -(x, y)
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.